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Telomerase and cancer
Jerry W. Shay1,+, Ying Zou1, Eiso Hiyama2 and Woodring E. Wright1

1The University of Texas Southwestern Medical Center, Department of Cell Biology, 5323 Harry Hines Boulevard,
Dallas, TX 75390-9039, USA and 2Department of General Medicine, Hiroshima University School of Medicine,
Hiroshima, Japan

Received 9 January 2001; Accepted 22 January 2001

Telomerase, a eukaryotic ribonucleoprotein (RNP) complex, contains both an essential RNA and a protein
reverse transcriptase subunit. By reverse transcription, the telomerase RNP maintains telomere length stability in
almost all cancer cells. Over the past few years there has been significant progress in identifying the components
of the telomerase holoenzyme complex and the proteins that associate with telomeres, in order to elucidate
mechanisms of telomere length regulation. This review covers recent advances in the field including the use
of telomerase in cancer diagnostics and an overview of anti-telomerase cancer therapeutic approaches.

INTRODUCTION

A fundamental difference in the behavior of normal versus
tumor cells in culture (1–5) is that normal cells divide for a
limited number of times (exhibit cellular senescence) whereas
tumor cells usually have the ability to proliferate indefinitely
(are immortal). There is substantial experimental evidence that
cellular aging is dependent on cell division and that the total
cellular lifespan is measured by the number of cell generations,
not by chronological time (6,7). This means there is an intrinsic
molecular counting process occurring during cell growth that
culminates in the cessation of cell division. It is now evident that
the progressive loss of the telomeric ends of chromosomes is an
important timing mechanism in human cellular aging (8–20).
Human telomeres contain long stretches of the repetitive
sequence TTAGGG (21,22) which are bound by specific pro-
teins. With each cell division, telomeres shorten by ∼50–200 bp
(23), primarily because the lagging strand of DNA synthesis is
unable to replicate the extreme 3′ end of the chromosome
(known as the end replication problem) (24,25). When telo-
meres become sufficiently short, cells enter an irreversible
growth arrest called cellular senescence. In most instances cells
become senescent before they can accumulate enough mutations
to become cancerous, thus the growth arrest induced by short
telomeres may be a potent anti-cancer mechanism.

Telomerase, a eukaryotic ribonucleoprotein (RNP) complex
(26–33), helps to stabilize telomere length in human stem cells,
reproductive cells (34) and cancer cells (35,36) by adding
TTAGGG repeats onto the telomeres using its intrinsic RNA
as a template for reverse transcription (37). Telomerase
activity has been found in almost all human tumors but not in
adjacent normal cells (35,36). The most prominent hypothesis
is that maintenance of telomere stability is required for the
long-term proliferation of tumors (38–42). Thus, escape from
cellular senescence and becoming immortal by activating
telomerase, or an alternative mechanism to maintain telomeres
(43), constitutes an additional step in oncogenesis that most

tumors require for their ongoing proliferation. This makes
telomerase a target not only for cancer diagnosis but also for
the development of novel anti-cancer therapeutic agents.

EVIDENCE THAT TELOMERE SHORTENING LEADS
TO REPLICATIVE SENESCENCE

Early in their cultured lifespan, human fibroblasts derived from
a young individual have long telomeres and strong signals
when examined by in situ hybridization (44) using a labeled
probe specific for TTAGGG repeats, whereas old passage have
considerably shorter telomeres (Fig. 1). In many patients with
premature aging syndromes called segmental progerias
(e.g. Hutchinson–Gilford syndrome, Werner’s syndrome and
Trisomy 21) there are tissues that have shorter telomeres
compared with age-matched controls, and cells obtained from
some of these individuals show a reduced proliferative
capacity in culture (45). Most human proliferative tissues and
organs, including most somatic cells (even stem cells of
renewal tissues), exhibit progressive telomere shortening
throughout life. There have been many studies demonstrating
correlations between telomere shortening and proliferative
failure of human cells (6–17). Evidence that it is causal was
demonstrated by introducing the telomerase catalytic protein
component [human telomerase reverse transcriptase (hTERT)]
into normal human cells (18,19). Normal human cells stably
expressing transfected telomerase exhibited telomerase
activity, demonstrated telomere maintenance and showed
indefinite proliferation, providing direct evidence that
telomere shortening controls cellular aging (46–54). The cells
with introduced telomerase maintain a normal chromosome
complement and continue to grow in a normal manner for
hundreds of doublings (46,47). These observations provide
direct evidence for the hypothesis that telomere shortening
determines the proliferative capacity of human cells.
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PROTEINS THAT INTERACT WITH TELOMERASE
AND TELOMERES

Two central issues are determining how short telomere length
signals entry into replicative senescence in normal cells and
how telomere length is maintained by the telomerase RNP in
tumor cells. To answer these important questions, two overlapping
areas are being pursued: (i) identifying and defining the func-
tion of the proteins at the telomere and (ii) identifying the
components and function of the proteins that associate with the
telomerase RNP complex.

Telomere associated proteins

Human telomeres are hidden from the cellular machinery that
would normally treat the end of a linear DNA molecule as a
broken strand needing repair. Pioneering work by the de Lange
laboratory (55–60) has identified two of the major telomeric
DNA binding proteins, telomeric repeat binding factor (TRF)1
and TRF2. Both TRF1 and TRF2 are expressed in all human
cell types, are associated with telomeric repeats throughout the
cell cycle and influence the length regulation of human telom-
eres either directly or by their interactions with other factors
(61–72). TRF1 interacts with tankyrase (63–65) and TRF1
interacting protein 2 (TIN2) (66) (Table 1), and TRF2 interacts
with hRap1 (67) and the Mre11/Rad50/Nbs1 DNA repair
complex (68). Other factors involved in the detection and
repair of DNA damage, such as Ku70/80 heterodimer,
also interact with TRF2 and bind to telomeric DNA ends
(69,70). In addition, in certain situations, heterogeneous
nuclear RNPs (hnRNPs) (71–74), ATM kinase (75–77) and
poly(ADP-ribose) polymerase (PARP) (78) may influence

telomere length homeostasis. The very terminus of the telomere
has a 3′ single-stranded overhang (which varies in length
depending on the cell type). Electron microscopic analysis of
telomeres has revealed that the end forms a higher order struc-
ture called the t-loop (79). It is thought, but not proven, that the
several kilobase-long t-loop is generated by strand invasion of
the single-stranded overhang into the duplex part of the
telomere repeat, forming a displacement or d-loop (79).
Collectively these components and structures are likely to be
involved in the protection and the maintenance of the ends.

Telomerase associated proteins

The human telomerase RNP consists of both a catalytic protein
component (hTERT) and a 451 bp integral RNA [human
telomerase RNA (hTR)] that are essential for telomerase
activity (18,33). The 3′ half of the hTR resembles the box H/ACA
family of small nucleolar RNAs (snoRNAs) (80,81), and
although the box H/ACA motif is not required for in vitro
assembly of telomerase, it is essential for proper 3′-end
processing, stability and nucleolar targeting in vivo (82). The 5′ end
of hTR contains the template used for the addition of telomeric
sequences to the ends of the chromosomes (37,83), as well as a
pseudoknot that is likely to be important for telomerase function
(81,84). The 5′ end of hTR also contains a 6 bp U-rich tract
required for a direct interaction with hnRNPs C1 and C2 (85).
Although several regions of hTR interact with the catalytic
protein component of telomerase (86–88), it is unclear whether
these interactions are mediated by auxiliary proteins, direct
contacts or both.

Figure 1. Telomeres are repetitive DNA sequences at the end of linear chromosomes. In most normal cells, progressive telomere shortening is observed each time
a cell divides. When telomeres are short, cells stop dividing and undergo a growth arrest (called replicative senescence). Almost all cancer cells are immortal,
having overcome cellular senescence by reactivating or upregulating telomerase, a cellular reverse transcriptase that stabilizes telomeres. In this figure, human
dermal BJ fibroblasts at low passage, population doubling (PD) 16 and 61, were treated with colcemid to arrest cells in mitosis and chromosome spreads were
made. Samples were prepared for quantitative fluorescence in situ hybridization (Q-FISH) microscopy using Cy3-labeled peptide nucleic acid probes specific for
(TTAGGG)n telomere sequences (red/pink) and the general DNA dye DAPI (blue/purple). Images of Cy3 and DAPI fluorescence were acquired on a digital image
microscopy system to calculate the fluorescence intensity for each telomere. The telomere length is proportional to the number of hybridized probes.
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Many auxiliary proteins have been identified that associate
with the human telomerase RNP (89–98). The vault protein
TEP1 was the first to be described (93,94). The snoRNA
binding proteins dyskerin and hGAR1 bind the snoRNA motif
at the 3′ end of hTR (80,95). The chaperone proteins p23/hsp90 are
involved in the assembly of telomerase activity (96). Members
of the hnRNP family of RNA binding proteins interact with
telomeric DNA as well as telomerase (85,97,98). More
recently, the La autoantigen, which is important for the
assembly of other RNA particles (99–101) and the maturation
of tRNAs (102), has been shown to interact directly with the
human telomerase RNP; La’s expression levels also influence
telomere length in a telomerase RNP-dependent fashion (99).

DETECTION OF TELOMERASE IN CANCER
DIAGNOSTICS

Most human cancers have short telomeres and express high
levels of telomerase, whereas in most normal somatic tissues
telomerase is absent (35,36). Telomerase has been examined in
hundreds of studies as a potentially sensitive biomarker for
screening, early cancer detection, prognosis or in monitoring
as an indication of residual disease (103–133). The detection of
telomerase activity has been evaluated using commercially
available research assays (106–108) on fresh or fresh frozen
tumor biopsies, fluids and secretions. With few exceptions,
these have shown that reactivation or upregulation of telomerase
activity and its template RNA (hTR) and catalytic protein
component (hTERT) are associated with all cancer types
investigated.

The catalytic protein of the telomerase RNP, hTERT, is
believed to be a critical if not rate limiting step in the produc-
tion of telomerase activity (32). We have examined hTERT
protein distribution by immunohistochemistry not only in
cultured cells (Fig. 2) but also in tissue sections (Fig. 3).
Cancer cells (HeLa, HT1080) and normal fibroblasts
expressing an introduced hTERT cDNA express high levels of

telomerase protein (Fig. 2), but this protein is not detected in
normal cells (Fig. 2). Cells with telomerase activity have positive
nuclear signals whereas cells without telomerase activity do
not (132). In most normal epithelial tissues, hTERT expression
is limited to stem cells and their immediate descendants. The
immunolocalization of hTERT in specimens of adult cancers
reveals that the level of telomerase activity mainly depends on
the number of tumor cells in a specimen (132). In cancers with
high telomerase activity, hTERT is detected in almost all cells,
whereas cancers with low telomerase activity have fewer
hTERT positive cells. The signal intensity per nucleus of
hTERT positive cells does not differ substantially between
tumors with various levels of telomerase activity, suggesting
that relative telomerase activity of tissue specimens from
cancer patients may be a surrogate indicator of overall tumor
burden.

ANTI-TELOMERASE CANCER THERAPY

The telomerase RNP and telomere complex present multiple
potential targets for the design of new anticancer strategies
(134–169). Telomerase may be a challenging target since its
inhibition should exhibit a lag phase: the lack of telomerase
should not affect cell growth rates until progressive telomere
shortening with each cell division eventually causes cells to die
or undergo growth arrest. Although it has been correctly
suggested that this approach would not be sufficient by itself in
patients with a large tumor burden (138–141), it may be a
unique approach to patients with minimal residual disease.
Importantly, normal somatic cells that lack telomerase expres-
sion should be largely unaffected by anti-telomerase therapy.
Although telomerase inhibitors should possess great specificity, it
is hoped they will also display low toxicity and few side
effects. The most likely use of telomerase inhibitors would be
as an adjuvant treatment in combination with surgery, radiation
treatment and typical chemotherapy, when tumor burden is
minimal. It is also possible that telomerase inhibitors could be

Table 1. Major human telomere proteins and telomerase components

aOther proteins with putative function in telomere biology are Ku, ATM, hnRNPA1, PARP, BLM, WRN, Rad51 and RPA.

Human telomere proteinsa

TRF1 (telomeric repeat binding factor 1: binds duplex TTAGGG) Tankyrase (TRF1 interacting protein: poly (ADP-ribose) polymerase)

TIN2 (TRF1 interacting protein 2)

TRF2 (telomeric repeat binding factor 2: binds duplex TTAGGG
and end protection)

hRap1 (TRF2 interacting protein: end protection)

Mre11/Rad50/Nbs1 (DNA repair; modulate t-loop formation

Human telomerase components

hTERT (human telomerase reverse transcriptase) p23/hsp90 (chaperone)

hTR (human telomerase RNA: intrinsic template RNA) SnoRNA binding proteins (dyskerin, hGar1)

TEP1 (vault protein)

hnRNPs C1/2 (heterogeneous nuclear ribonucleoproteins)

La (autoantigen, RNA processing)

L22, hStau (ribosomal protein, double-stranded RNA binding protein)
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used following standard therapies in which there is no clinical
evidence of residual disease in order to treat possible micro-
metastases, and thus prevent cancer relapse. These situations
will require prolonged treatment, so it will be important that
the drugs have a low toxicity profile and are easily administered.

The primary unwanted effect of telomerase inhibition
therapy may be on telomerase-positive reproductive cells and
other proliferative cells of renewal tissues (38–42). Cells from
such tissues generally have much longer telomeres than most
tumor cell populations. Furthermore, stem cells of renewal
tissues should be much less affected than dividing tumor cells;
they proliferate only occasionally, and telomere shortening
should not occur in the absence of cell division. Because the
most primitive stem cell populations only rarely divide, their
telomeres should shorten at a much slower rate than telomerase-
inhibited, proliferating cancer cells. After the cancer cells have
shortened their telomeres and died, anti-telomerase therapy
could be discontinued and telomerase activity in reproductive
and stem cells would be restored. Thus, anti-telomerase
therapy is likely to eliminate the proliferative potential of
cancer cells before the telomere lengths in normal reproductive
and stem cells shorten sufficiently to disrupt their function.

Another avenue is to kill telomerase-expressing cells (146–
148,156–160). Immunotherapy directed against telomerase
positive cells is currently under investigation (146–148). This
approach has the advantage of abolishing the lag phase that is
required with the classic mode of telomerase inhibition.

However, this treatment might also prove to be toxic to normal
stem cells expressing telomerase.

It is still too early to know with certainty whether telomerase
inhibitors will become a treatment option against cancer. There
is concern about the emergence of alternative mechanisms of
telomere maintenance and whether there will be side effects on
normal hematopoietic and germline cells. These and other
questions will only be answered when anti-telomerase drugs
are moved into animal and human clinical trials.

SUMMARY AND FUTURE CHALLENGES

Telomere biology is important in human cancer. Cancer cells
need a mechanism to maintain telomeres if they are going to
divide indefinitely, and telomerase solves this problem.
Although we are beginning to identify an increasing number of
telomere- and telomerase-associated proteins, the key is to
understand how the telomerase holoenzyme and telomere
complex interact to maintain telomere length. The challenge is
to learn how to intervene in these processes and exploit our
increasing knowledge of telomere biology for the diagnosis
and treatment of malignancies.
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Figure 2. The catalytic reverse transcriptase protein component of telomerase, hTERT, is required for the production of telomerase activity. These images represent
immunohistochemical localization of hTERT protein in cells. Cancer cells such as HeLa and HT1080 and normal fibroblasts expressing an introduced hTERT cDNA
express high levels of telomerase protein but this protein is not detected in normal cells (BJ). Cells with telomerase activity have positive nuclear signals whereas
cells without telomerase activity do not.
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